Lectures
Lecture plan:
- 16.10 MM - backprop
- 23.10 MM - optimizers
- 30.10 MM - helping SGD
- 06.11 MM - wrap up, MC - frameworks
- — bonus material - prerecorded lecture - practical considerations
- 13.11 MC Convnets 1 (classification)
- 20.11 MC Convnets 2 (detection & segmentation)
- 27.11 MC Generative modeling (VAE, GANs)
- 4.12 MC RNNs
- 11.12 MC Language Modelling
- 18.12 ? Transformers
- — bonus material (if needed)
- 8.01 MC RL1 - DQN
- 15.01 MC RL2 - Policy Gradients
- 22.01 MC RL3 - AlphaGo, ChatGPT
Labs
- Lab1:
- Lab2: lab2-backprop
- Lab3: lab3-optimizers
- Lab4:
- Lab5: lab5-batchnorm-and-convnets
Homeworks
Old exams
Both coding tasks and tests from editions 2020/21-2023/24 are here